Computational Insights into CO₂-to-Ethane Reduction via a Bioinspired Methyltransferase Molecular Catalyst

Autores

  • João Victor Ferreira da Costa Instituto de Química - USP Autor
  • Ataualpa A. C. Braga Instituto de Química - USP Autor

Palavras-chave:

CO2 reduction, iron porphyrin, ethane synthesis

Resumo

While most molecular catalysts reduce CO₂ to single-carbon products (CO, HCOOH, CH₃OH, etc.), few can generate C₂ products like ethane (C₂H₆), a feat typically dominated by heterogeneous systems. Recently, a thiol-functionalized iron porphyrin catalyst achieved CO₂-to-ethane conversion with H₂O as a proton source, reaching ~40% Faradaic efficiency. This study explores the mechanistic pathway, focusing on the critical first methyl incorporation onto the pendant thiol (2nd sphere) and subsequent C–C coupling via second CO₂ reduction at the metal center. Computational insights reveal how sequential methyl transfers enable ethane formation, bridging bioinspired design with sustainable C₂ synthesis.

Referências

1. C. G. Margarit; C. Schnedermann; N. G. Asimow; D. G. Nocera, Organometallics 2019, 38, 1219-1223.

2. I. Azcarate; C. Costentin; M. Robert; J.-M. Savéant, J. Am. Chem. Soc. 2016, 138, 16639-16644.

3. D. J. Martin; J. M. Mayer, J. Am. Chem. Soc. 2021, 143, 11423-11434.

4. C. A. Obasanjo et al., Nat. Commun. 2023, 14, 3176.

5. S. Amanullah; P. Saha; A. Dey, J. Am. Chem. Soc. 2021, 143, 13579-13592.

6. C. G. Margarit; N. G. Asimow; C. Costentin; D. G. Nocera, ACS Energy Lett. 2020, 5, 72-78.

7. S. Patra; S. Bhunia; S. Ghosh; A. Dey, ACS Catal. 2024, 14, 7299-7307.

8. S. Patra; S. Dinda; S. Ghosh; T. Roy; A. Dey, Proc. Natl. Acad. Sci. USA 2025, 122, e2417764122.

9. M. J. Frisch et al., Gaussian 16 Rev. C.01, 2016 (manual técnico)

10. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

11. S. Grimme; J. Antony; S. Ehrlich; H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119.

12. F. Weigend; R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

13. K. Fukui, J. Phys. Chem. B 1970, 74, 4161-4163.

14. K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.

15. F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.

16. A. V. Marenich et al., Phys. Chem. Chem. Phys. 2014, 16, 15068-15106.

17. J. Römelt et al., Inorg. Chem. 2017, 56, 4745-4750.

18. H. Cove; D. Toroz; D. D. Tommaso, Mol. Catal. 2020, 498, 111248.

19. Y. Wang; W. Lai, Mol. Catal. 2024, 566, 114430.

20. M. Moura De Salles Pupo; R. Kortlever, ChemPhysChem 2019, 20, 2926-2935.

21. T. Lu; Q. Chen, ChemRxiv 2021, 1, 231-239.

22. T. Lu; F. Chen, J. Comput. Chem. 2012, 33, 580-592.

23. W. Humphrey; A. Dalke; K. Schulten, J. Mol. Graphics 1996, 14, 33-38.

24. J.-Y. Chen; M. Li; R.-Z. Liao, Inorg. Chem. 2023, 62, 9400-9417.

25. D. Nam et al., Nat. Commun. 2023, 14, 7985.

26. T. Rogge et al., J. Am. Chem. Soc. 2024, 146, 2959-2966.

Downloads

Publicado

03-11-2025

Edição

Seção

Catálise teórica e computacional