Computational Insights into CO₂-to-Ethane Reduction via a Bioinspired Methyltransferase Molecular Catalyst
Palavras-chave:
CO2 reduction, iron porphyrin, ethane synthesisResumo
While most molecular catalysts reduce CO₂ to single-carbon products (CO, HCOOH, CH₃OH, etc.), few can generate C₂ products like ethane (C₂H₆), a feat typically dominated by heterogeneous systems. Recently, a thiol-functionalized iron porphyrin catalyst achieved CO₂-to-ethane conversion with H₂O as a proton source, reaching ~40% Faradaic efficiency. This study explores the mechanistic pathway, focusing on the critical first methyl incorporation onto the pendant thiol (2nd sphere) and subsequent C–C coupling via second CO₂ reduction at the metal center. Computational insights reveal how sequential methyl transfers enable ethane formation, bridging bioinspired design with sustainable C₂ synthesis.
Referências
1. C. G. Margarit; C. Schnedermann; N. G. Asimow; D. G. Nocera, Organometallics 2019, 38, 1219-1223.
2. I. Azcarate; C. Costentin; M. Robert; J.-M. Savéant, J. Am. Chem. Soc. 2016, 138, 16639-16644.
3. D. J. Martin; J. M. Mayer, J. Am. Chem. Soc. 2021, 143, 11423-11434.
4. C. A. Obasanjo et al., Nat. Commun. 2023, 14, 3176.
5. S. Amanullah; P. Saha; A. Dey, J. Am. Chem. Soc. 2021, 143, 13579-13592.
6. C. G. Margarit; N. G. Asimow; C. Costentin; D. G. Nocera, ACS Energy Lett. 2020, 5, 72-78.
7. S. Patra; S. Bhunia; S. Ghosh; A. Dey, ACS Catal. 2024, 14, 7299-7307.
8. S. Patra; S. Dinda; S. Ghosh; T. Roy; A. Dey, Proc. Natl. Acad. Sci. USA 2025, 122, e2417764122.
9. M. J. Frisch et al., Gaussian 16 Rev. C.01, 2016 (manual técnico)
10. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
11. S. Grimme; J. Antony; S. Ehrlich; H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119.
12. F. Weigend; R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
13. K. Fukui, J. Phys. Chem. B 1970, 74, 4161-4163.
14. K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
15. F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
16. A. V. Marenich et al., Phys. Chem. Chem. Phys. 2014, 16, 15068-15106.
17. J. Römelt et al., Inorg. Chem. 2017, 56, 4745-4750.
18. H. Cove; D. Toroz; D. D. Tommaso, Mol. Catal. 2020, 498, 111248.
19. Y. Wang; W. Lai, Mol. Catal. 2024, 566, 114430.
20. M. Moura De Salles Pupo; R. Kortlever, ChemPhysChem 2019, 20, 2926-2935.
21. T. Lu; Q. Chen, ChemRxiv 2021, 1, 231-239.
22. T. Lu; F. Chen, J. Comput. Chem. 2012, 33, 580-592.
23. W. Humphrey; A. Dalke; K. Schulten, J. Mol. Graphics 1996, 14, 33-38.
24. J.-Y. Chen; M. Li; R.-Z. Liao, Inorg. Chem. 2023, 62, 9400-9417.
25. D. Nam et al., Nat. Commun. 2023, 14, 7985.
26. T. Rogge et al., J. Am. Chem. Soc. 2024, 146, 2959-2966.