Exsolution of multimetallic particles from high-entropy oxides for CO2 hydrogenation to methanol

Autores

  • Guilherme Strapasson University of Campinas/Brazilian Synchrotron Light Laboratory Autor
  • Larissa E. R. Ferreira University of Campinas Autor
  • Emma S. Chaos University of Copenhagen Autor
  • Adrian S. Arjona University of Copenhagen Autor
  • Silma A. Correa Federal University of Rio Grande do Sul Autor
  • Cristiane B. Rodella Brazilian Synchrotron Light Laboratory Autor
  • Kirsten M. Ø. Jensen University of Copenhagen Autor
  • Andrea Kirsch Ruhr University Bochum Autor
  • Daniela Zanchet University of Campinas Autor

Palavras-chave:

CO2 hydrogenation, Nanomaterials, High entropy oxides, Exsolution

Resumo

This work reports the synthesis and catalytic evaluation of a high-entropy spinel oxide (Co0.33Ni0.33Cu0.33)(Cr0.5Mn0.5)2O4 as a platform for in situ exsolution of multimetallic nanoparticles active in CO2 hydrogenation to methanol. Structural characterization revealed temperature-dependent exsolution of Cu, Ni, and Co, forming nanoparticles with variable size and composition, from Cu-rich to CuNiCo alloyed phases. Catalytic tests at 100 bar and 200 °C showed that moderate reduction (500 °C) led to the best compromise between activity and selectivity, with a methanol yield of 1.5%; whereas higher temperatures reduced activity but increased alcohols selectivity. These results highlight the potential of high-entropy oxides as versatile and tunable catalysts for designing thermally stable and selective catalysts for CO2 conversion.

Referências

(1) Najimu, M.; Jo, S.; Gilliard-AbdulAziz, K. L. Co- Acc Chem Res 2023, 56 (22), 3132–3141.

(2) Kim, J. H.; Kim, J. K.; Liu, J.; Curcio, A.; Jang, J. S.; Kim, I. D.; Ciucci, F.; Jung, W. C. ACS Nano. American Chemical Society January 26, 2021, pp 81–110.

(3) Zhang, M.; Gao, Y.; Xie, C.; Duan, X.; Lu, X.; Luo, K.; Ye, J.; Wang, X.; Gao, X.; Niu, Q.; Zhang, P.; Dai, S. Nat Commun 2024, 15 (1), 8306.

(4) Kousi, K.; Tang, C.; Metcalfe, I. S.; Neagu, D. Small. John Wiley and Sons Inc May 1, 2021.

(5) Shi, Y. F.; Ma, S.; Liu, Z. P. EES Catalysis 2023, 1 (6), 921–933.

(6) Sun, Z.; Hao, C.; Toan, S.; Zhang, R.; Li, H.; Wu, Y.; Liu, H.; Sun, Z. Royal Society of Chemistry August 3, 2023, pp 17961–17976.

(7) Wang, J.; Kumar, A.; Wardini, J. L.; Zhang, Z.; Zhou, H.; Crumlin, E. J.; Sadowski, J. T.; Woller, K. B.; Bowman, W. J.; Lebeau, J. M.; Yildiz, B. Nano Lett 2022, 22 (13), 5401–5408.

(8) Su, C.; Wang, W.; Shao, Z. Acc Mater Res 2021, 2 (7), 477–488.

(9) Weber, M. L.; Šmíd, B.; Breuer, U.; Rose, M. A.; Menzler, N. H.; Dittmann, R.; Waser, R.; Guillon, O.; Gunkel, F.; Lenser, C. Nat Mater 2024, 23 (3), 406–413.

(10) Luo, Y.; Chang, X.; Wang, J.; Zhang, D.; Fu, L.; Gu, X. K.; Wang, Y.; Liu, T.; Ding, M. ACS Nano 2025, 19 (1), 1463–1477.

(11) Zhao, B.; Du, Y.; Yan, Z.; Rao, L.; Chen, G.; Yuan, M.; Yang, L.; Zhang, J.; Che, R. Adv Funct Mater 2023, 33 (1).

(12) Han, Y.; Liu, X.; Zhang, Q.; Huang, M.; Li, Y.; Pan, W.; Zong, P. an; Li, L.; Yang, Z.; Feng, Y.; Zhang, P.; Wan, C. Nat Commun 2022, 13 (1).

(13) Han, H.; Park, J.; Nam, S. Y.; Kim, K. J.; Choi, G. M.; Parkin, S. S. P.; Jang, H. M.; Irvine, J. T. S. Nat Commun 2019, 10 (1).

(14) Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Nature Nanotechnology. Nature Research February 1, 2021, pp 140–147.

(15) Kirsch, A.; Bøjesen, E. D.; Lefeld, N.; Larsen, R.; Mathiesen, J. K.; Skjærvø, S. L.; Pittkowski, R. K.; Sheptyakov, D.; Jensen, K. M. Ø. Chemistry of Materials 2023, 35 (20), 8664–8674.

Downloads

Publicado

03-11-2025

Edição

Seção

Catálise para transição energética