Ajuste de Mesoporosidade e Seletividade em Intermediários de Interconversão FAU–MFI para Produção de Xilenos

Autores

  • Daniela Campos LIPCAT/UFRJ Autor
  • Anna Monsores UFRJ Autor
  • Donato Aranda LIPCAT/UFRJ Autor
  • João Monnerat LIPCAT/UFRJ Autor
  • Pedro Nothaft Romano LIPCAT/UFRJ Autor
  • Javier Garcia Martinez Universidad de Alicante Autor https://orcid.org/0000-0002-7089-4973

Palavras-chave:

Zeólitas híbridas, ; intermediários de transformação interzeolítica, Porosidade hierárquica

Resumo

A produção sustentável de aromáticos a partir de fontes renováveis é um desafio central para a descarbonização da indústria de polímeros. Neste estudo, zeólitas hierárquicas híbridas foram obtidas por interconversão assistida por micro-ondas da fase FAU para MFI e avaliadas na conversão de 2,5-dimetilfurano (DMF) e etanol em p-xileno. As propriedades estruturais, texturais e ácidas foram caracterizadas por DRX, MEV, MET, RMN, espectroscopia Raman e TPD de NH₃. Os resultados demonstraram que a hibridização das estruturas promoveu maior acessibilidade molecular e impactou diretamente a seletividade de formato, favorecendo a formação de p-xileno. O catalisador HyZ-38, contendo unidades estruturais de FAU e MFI, apresentou o melhor desempenho, com rendimento de 45,2%. Esses achados reforçam o potencial das zeólitas híbridas como catalisadores eficientes em processos sustentáveis voltados à valorização da biomassa.

Referências

[1] G.B. Marçano, L.A. de Sousa, J.M.M. Ferreira, D.A.G. Aranda, P.N. Romano, J.M.A.R. de Almeida, PP upcycling employing FCC spent catalyst: The role of contaminants, atmosphere and pressure, Catalysis Today 442 (2024) 114950. https://doi.org/10.1016/j.cattod.2024.114950.

[2] F. Welle, Twenty years of PET bottle to bottle recycling—An overview, Resources, Conservation and Recycling 55 (2011) 865–875. https://doi.org/10.1016/j.resconrec.2011.04.009.

[3] J. Pang, M. Zheng, R. Sun, A. Wang, X. Wang, T. Zhang, Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET, Green Chem. 18 (2016) 342–359. https://doi.org/10.1039/C5GC01771H.

[4] P.P. Van Uytvanck, G. Haire, P.J. Marshall, J.S. Dennis, Impact on the Polyester Value Chain of Using p-Xylene Derived from Biomass, ACS Sustainable Chem. Eng. 5 (2017) 4119–4126. https://doi.org/10.1021/acssuschemeng.7b00105.

[5] 12 Principles of Green Chemistry, American Chemical Society (n.d.). https://www.acs.org/green-chemistry-sustainability/principles/12-principles-of-green-chemistry.html (accessed March 21, 2025).

[6] K. Kohli, R. Prajapati, B.K. Sharma, Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries, Energies 12 (2019) 233. https://doi.org/10.3390/en12020233.

[7] R. Zhao, L. Wu, X. Sun, H. Tan, Q. Fu, M. Wang, H. Cui, Renewable p-xylene synthesis via biomass-derived 2,5-dimethylfuran and ethanol by phosphorous modified H-Beta zeolite, Microporous and Mesoporous Materials 334 (2022) 111787. https://doi.org/10.1016/j.micromeso.2022.111787.

[8] R. Zhao, S. Li, L. Bi, Q. Fu, H. Tan, M. Wang, H. Cui, Enhancement of p-xylene selectivity in the reaction between 2,5-dimethylfuran and ethanol over an ammonium fluoride-modified ZSM-5 zeolite, Catal. Sci. Technol. 12 (2022) 2248–2256. https://doi.org/10.1039/D1CY01793D.

[9] Biobased Terephthalic Acid Technologies: A Literature Review | Request PDF, ResearchGate (2025). https://doi.org/10.1089/ind.2014.0002.

[10] X. Feng, X. Li, X. Han, H. Qu, C. Liu, W. Yang, Z. Wang, Production of Renewable p-Xylene from 2,5-Dimethylfuran and Ethylene over MWW Zeolite Catalysts, Ind. Eng. Chem. Res. 63 (2024) 13145–13156. https://doi.org/10.1021/acs.iecr.4c01610.

[11] L. Zhang, N. Liu, C. Dai, R. Xu, G. Yu, B. Chen, N. Wang, Recent advances in shape selectivity of MFI zeolite and its effect on the catalytic performance, Cs 3 (2023) N/A-N/A. https://doi.org/10.20517/cs.2022.31.

[12] M.J. Mendoza-Castro, Z. Qie, X. Fan, N. Linares, J. García-Martínez, Tunable hybrid zeolites prepared by partial interconversion, Nat Commun 14 (2023) 1256. https://doi.org/10.1038/s41467-023-36502-3.

[13] M.J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, J. García-Martínez, Hierarchical Catalysts Prepared by Interzeolite Transformation, J. Am. Chem. Soc. 144 (2022) 5163–5171. https://doi.org/10.1021/jacs.2c00665.

[14] J. Telles de Souza, A. Ferreira Young, E.F. Sousa-Aguiar, P.N. Romano, J. García-Martínez, J.M.A.R. De Almeida, How Local Order Leads to Shape Selectivity in Disordered Materials: The Case of FAU-FER Interzeolite Transformation Intermediates, ACS Catal. (2025) 4586–4595. https://doi.org/10.1021/acscatal.4c07182.

[15] Wm.C. Conner, G. Tompsett, K.-H. Lee, K.S. Yngvesson, Microwave Synthesis of Zeolites: 1. Reactor Engineering, J. Phys. Chem. B 108 (2004) 13913–13920. https://doi.org/10.1021/jp037358c.

[16] R. Jain, A. Chawla, N. Linares, J. García Martínez, J.D. Rimer, Spontaneous Pillaring of Pentasil Zeolites, Advanced Materials 33 (2021) 2100897. https://doi.org/10.1002/adma.202100897.

[17] H.E. Robson, Verified Synthesis of Zeolitic Materials: Second Edition, Gulf Professional Publishing, 2001.

[19] G. Bonilla, I. Díaz, M. Tsapatsis, H.-K. Jeong, Y. Lee, D.G. Vlachos, Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents, Chem. Mater. 16 (2004) 5697–5705. https://doi.org/10.1021/cm048854w.

[20] Q. Wu, X. Wang, G. Qi, Q. Guo, S. Pan, X. Meng, J. Xu, F. Deng, F. Fan, Z. Feng, C. Li, S. Maurer, U. Müller, F.-S. Xiao, Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents, J. Am. Chem. Soc. 136 (2014) 4019–4025. https://doi.org/10.1021/ja500098j.

Downloads

Publicado

03-11-2025

Edição

Seção

Síntese e caracterização de catalisadores e adsorventes